Exercise 20

- Given $f(x) = \frac{1}{x}$ and g(x) = x 3, find the following: (a) $(f \circ g)(x)$
 - (b) the domain of $(f \circ g)(x)$ in interval notation
 - (c) $(g \circ f)(x)$
 - (d) the domain of $(g \circ f)(x)$
 - (e) $\left(\frac{f}{g}\right)(x)$

Solution

Compute $(f \circ g)(x)$ by plugging the formula for g(x) where x is in the formula for f(x).

$$(f \circ g)(x) = f(g(x))$$
$$= \frac{1}{(x-3)}$$
$$= \frac{1}{x-3}$$

It's impossible to divide by zero, so $x - 3 \neq 0$. Add 3 to both sides to solve for $x: x \neq 3$. Therefore, the domain of $(f \circ g)(x)$ in interval notation is $(-\infty, 3) \cup (3, \infty)$. Compute $(g \circ f)(x)$ by plugging the formula for f(x) where x is in the formula for g(x).

$$(g \circ f)(x) = g(f(x))$$
$$= \left(\frac{1}{x}\right) - 3$$
$$= \frac{1}{x} - 3$$

It's impossible to divide by zero, so $x \neq 0$. Therefore, the domain of $(g \circ f)(x)$ in interval notation is $(-\infty, 0) \cup (0, \infty)$.

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
$$= \frac{\frac{1}{x}}{x-3}$$
$$= \frac{1}{x(x-3)}$$

It's impossible to divide by zero, so

$$x(x-3) \neq 0$$

$$x \neq 0 \quad \text{or} \quad x-3 \neq 0$$

$$x \neq 0 \quad \text{or} \quad x \neq 3.$$

Therefore, the domain of (f/g)(x) is $(-\infty, 0) \cup (0, 3) \cup (3, \infty)$.

www.stemjock.com