Exercise 20

Given $f(x)=\frac{1}{x}$ and $g(x)=x-3$, find the following:
(a) $(f \circ g)(x)$
(b) the domain of $(f \circ g)(x)$ in interval notation
(c) $(g \circ f)(x)$
(d) the domain of $(g \circ f)(x)$
(e) $\left(\frac{f}{g}\right)(x)$

Solution

Compute $(f \circ g)(x)$ by plugging the formula for $g(x)$ where x is in the formula for $f(x)$.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =\frac{1}{(x-3)} \\
& =\frac{1}{x-3}
\end{aligned}
$$

It's impossible to divide by zero, so $x-3 \neq 0$. Add 3 to both sides to solve for $x: x \neq 3$. Therefore, the domain of $(f \circ g)(x)$ in interval notation is $(-\infty, 3) \cup(3, \infty)$. Compute $(g \circ f)(x)$ by plugging the formula for $f(x)$ where x is in the formula for $g(x)$.

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =\left(\frac{1}{x}\right)-3 \\
& =\frac{1}{x}-3
\end{aligned}
$$

It's impossible to divide by zero, so $x \neq 0$. Therefore, the domain of $(g \circ f)(x)$ in interval notation is $(-\infty, 0) \cup(0, \infty)$.

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} \\
& =\frac{\frac{1}{x}}{x-3} \\
& =\frac{1}{x(x-3)}
\end{aligned}
$$

It's impossible to divide by zero, so

$$
\begin{gathered}
x(x-3) \neq 0 \\
x \neq 0 \quad \text { or } \quad x-3 \neq 0 \\
x \neq 0 \quad \text { or } \quad x \neq 3 .
\end{gathered}
$$

Therefore, the domain of $(f / g)(x)$ is $(-\infty, 0) \cup(0,3) \cup(3, \infty)$.

